
Prototype Test Plan
Project Group 10 - November 3, 2024

__

Objective: Prototype I, establishing foundational functionality for critical subsystems,

including Restricted Zone Access or Zone Restricted Access (ZRA) and Location

Acquisition. Additionally, developing and updating the Bill of Materials (BOM), refine

prototype plan, and initiate testing to validate key performance metrics..

Define Measurements

○ API - Table 1

○ Zone Restricted Access (ZRA) - Table 2

Table 1: API Defined Measurements

Lines of code 77

Coordinates of user (X,Y) (Dynamic; values vary with user location)

Coordinates of Zone (X,Y) (Dynamic; values depend on designated

zone)

Table 1: ZRA Defined Measurements

Lines of code 26

Authorization value - Specific to access level for each𝑋 ∈ ℜ

zone

Bill of Materials

Item Description Quantity Unit Cost ($) Total Cost
($)

Links

Shabodi’s
APIs

Access to
Shabodi’s
APIs for
location, and
other network
capabilities

1 0 0 Shabodi
Sandbox

Python
Development
Environment -
VSCode

Open-source
software for
backend
development
and API
integration

1 0 0 N/A

Database
Software -
Firebase

Specifically
Gigaspaces or
MongoDSB

Open-source
database
software

1 0 0 Understandin
g your Data

Stack
Handbook -

Gated
(gigaspaces.c

om)

Wi-Fi/Bluetoo
th Testing
Tools

Open-source
tools (scapy)
for device
detection and
network
control
scripting
(psutil)

1 0 0 Scapy -
Introduction
— Scapy
2.6.0

documentatio
n

Psutil - psutil
· PyPI

Development
Tools -
Webapp built
with React

Open-source
tools for
developing
an optional
user interface

1 0 0 React

Testing Objectives and Scope

https://go.gigaspaces.com/data-stack-handbook
https://go.gigaspaces.com/data-stack-handbook
https://go.gigaspaces.com/data-stack-handbook
https://go.gigaspaces.com/data-stack-handbook
https://go.gigaspaces.com/data-stack-handbook
https://go.gigaspaces.com/data-stack-handbook
https://go.gigaspaces.com/data-stack-handbook
https://scapy.readthedocs.io/en/latest/introduction.html
https://scapy.readthedocs.io/en/latest/introduction.html
https://scapy.readthedocs.io/en/latest/introduction.html
https://scapy.readthedocs.io/en/latest/introduction.html
https://scapy.readthedocs.io/en/latest/introduction.html
https://pypi.org/project/psutil/
https://pypi.org/project/psutil/
https://react.dev/

Primary Testing Focus: For this prototype, testing will concentrate on two essential

subsystems

1. Restricted Zone Access (ZRA) - Ensuring that only authorized users can enter

designated areas

2. Location Acquisition - Accurately capturing user coordinates for zone validation

By validating these components in isolation, we establish a solid foundation for further

development and integration in future prototypes.

API Analysis:

● Zone-Specific Requirements: AUTHORIZED_ZONES is a dictionary where each

zone has a location, radius, and required authority level.

● Authority Level Check: In restricted_zone_access, the has_access function compares

the user's authority level with the zone’s requirement before proceeding with location

validation.

● Access Denial for Low Authority: If the authority level is too low, access is denied,

and the superior is not notified.

Zone Restricted Access: Analysis

● Authorization Check: has_access verifies if the user’s authority_level meets or

exceeds the required level for the specified zone.

● Access Message: Based on the result, restricted_zone_access outputs either "Access

Granted" or "Access Restricted."

Testing Procedure

Running the ZRA Code

The ZRA functionality can be tested by inputting a user’s authority level and the zone name.

If the entered level satisfies the zone’s requirement, “Access Granted” is displayed.

Otherwise, it will return “Access Restricted.”

Running the API Code

The API’s code currently serves as a template, pending access to Shabodi’s proprietary API.

When access is granted, API fields will be populated for full testing capability,

Prototype 1 - Couldn’t access API, but functional in current state as it pulls necessary data

and completes analysis to determine location

Design

Concept

Reason

for

Prototype

Describe

the

Concept

to be

Prototype

d and

Tested

Level of

Prototype

Kind of

Prototype

Metrics Test

Descriptio

n

Analysis

Method

Results Interpreta

tion

Notes

Prototype 1 -

Proof of

Concept

Device

Detection

and

Logging

Demonstra

te basic

device

detection

and ability

to log

devices

within

specified

zones

using

addresses

Focus Analytical Device

detection

accuracy:

80% or

higher

over a

30-minute

interval

Scan for

devices

within a

specified

Wi-Fi

range

Monitor

device

presence

within the

zone and

log data in

the

database;

verify

accuracy

by

comparing

manuel

logs with

system

logs

At least

80%

detection

accuracy

in device

logging

Pass if

device

detection

is accurate

80% of the

time or

higher

over a

30-minute

testing

interval

Testing

conducted using

controlled

Wi-Fi network

setup to ensure

signal

consistency

Prototype 2 -

Critical

Subsystem

Testing

Access

Restriction

and

Bandwidth

Control

Verify

access

restriction

and

bandwidth

control

capabilitie

s using

Shabodi’s

API

Focus Analytical Response

time for

access

restriction:

2 seconds

or less

Set up

restricted

zones and

apply

bandwidth

limits

when a

device

moves out

of bounds

Measure

response

time by

timing

delay

between

device

detection

out of

bounds

and

restriction

activation

Restriction

applied

within 2

seconds of

device

detection

out of zone

Pass if the

system

limits

access

within 2

seconds

and

maintains

restriction

consistentl

y

Testing

conducted in

different zones

to verify

response

stability across

varied network

conditions

Prototype 3 -

Database and

Zone

Management

Data

Manageme

nt for

Zones and

Devices

Test

storage

and

retrieval of

device

data in a

database,

as well as

setting up,

updating,

and

removing

zones.

Focus Analytical Database

retrieval

time <1

second;

accurate

zone

creation

and

updates

Test

storing

device

data

(MAC

Address

zones) and

updating

zone

settings in

database,

ensuring

data is

quickly

accessible

and

up-to-date

Query the

database

and

measure

retrieval

times;

validate

zone

accuracy

by

checking

stored vs.

displayed

data

Database

retrieval in

<1 second

and correct

zone

updates

Pass if

retrieval

time is

under 1

second,

and zone

manageme

nt

functions

(add,

update,

delete)

work as

expected

Testing includes

adding multiple

devices and

zones to

stimulate actual

usage

Prototype 4 -

Full System

Integration

User

Interaction

and

System

Functional

ity

Test full

system

integration

, including

backend,

API,

database,

and

optional

user

interface

functionali

ty for

monitoring

HiFi

Comprehe

nsive

Physical

and

analytical

System

operates

without

crashes;

UI

Displays

data within

2 seconds

Test

complete

system

with all

integrated

component

s, allowing

device

manageme

nt via

optional

UI and

ensuring

real-time

updates

Interact

with the

system

through

the UI (if

implement

ed) and

validate

end-to-end

functionali

ty for

different

user

scenarios

System

stable and

UI updates

within 2

seconds

Pass if

system

operates as

intended

with no

crashes,

and all

component

s work in

sync

Testing include

various device

entries/exits and

user actions via

the UI

functionality

and stability

Code/Prototype:

ZRA: A sample of the Zone Restricted Access code for initial testing is provided below

Define zones with required authority levels for access

AUTHORIZED_ZONES = {

"Zone_A": {"required_level": 5},

"Zone_B": {"required_level": 7},

}

Function to check if user meets the authority requirement for the zone

def has_access(authority_level, zone_name):

zone_info = AUTHORIZED_ZONES.get(zone_name)

if zone_info is None:

print("Zone not found.")

return False

return authority_level >= zone_info["required_level"]

Main function to check access for a specific zone

def restricted_zone_access(authority_level, zone_name):

if has_access(authority_level, zone_name):

print("Access Granted.")

else:

print("Access Restricted.")

Example usage

authority_level = int(input("Enter user authority level: ")) # User's authority level

zone_name = input("Enter zone name (e.g., Zone_A): ") # Name of the zone

restricted_zone_access(authority_level, zone_name)

API: Sample of the API code for initial testing is provided below:

\import requests

from datetime import datetime

Constants (fill in according to Shabodi's API details)

SHABODI_API_BASE_URL = "https://api.shabodi.com/v1" # Example base URL

API_KEY = "your_api_key_here" # Replace with your actual API key

Define zones and required authority levels

AUTHORIZED_ZONES = {

"Zone_A": {"latitude": 40.712776, "longitude": -74.005974, "radius": 50, "required_level":

5},

"Zone_B": {"latitude": 34.052235, "longitude": -118.243683, "radius": 50,

"required_level": 7},

}

Function to get user's location

def get_user_location(user_id):

url = f"{SHABODI_API_BASE_URL}/getLocation"

headers = {"Authorization": f"Bearer {API_KEY}"}

params = {"userId": user_id}

response = requests.get(url, headers=headers, params=params)

if response.status_code == 200:

return response.json() # Assuming response has latitude and longitude

else:

print(f"Error: {response.status_code}")

return None

Function to check if user meets the authority requirement for the zone

def has_access(authority_level, zone_info):

return authority_level >= zone_info["required_level"]

Function to check if user is within authorized zone

def is_in_zone(user_location, zone_info):

Here, use the Haversine formula or geolocation library to check distance

lat, lon = user_location["latitude"], user_location["longitude"]

distance = calculate_distance(lat, lon, zone_info["latitude"], zone_info["longitude"])

return distance <= zone_info["radius"]

Function to notify superior

def notify_superior(user_id, status):

url = f"{SHABODI_API_BASE_URL}/notify"

headers = {"Authorization": f"Bearer {API_KEY}"}

data = {

"userId": user_id,

"status": status,

"timestamp": datetime.now().isoformat()

}

response = requests.post(url, headers=headers, json=data)

if response.status_code == 200:

print("Superior notified successfully.")

else:

print(f"Notification failed: {response.status_code}")

Main function to check access for each authorized zone

def restricted_zone_access(user_id, authority_level, zone_name):

user_location = get_user_location(user_id)

if user_location and zone_name in AUTHORIZED_ZONES:

zone_info = AUTHORIZED_ZONES[zone_name]

Check if the user has the required authority level

if has_access(authority_level, zone_info):

Check if user is within the zone

if is_in_zone(user_location, zone_info):

print(f"Access granted to {zone_name}.")

notify_superior(user_id, "Arrived on time")

else:

print(f"User is not within the authorized zone for {zone_name}.")

else:

print(f"Access denied: insufficient authority level for {zone_name}.")

else:

print("Access denied due to insufficient authority level or invalid zone.")

Example usage

user_id = "user123" # Replace with actual user ID

authority_level = 5 # Example authority level

restricted_zone_access(user_id, authority_level, "Zone_A")

Combined Code: Sample of the code integrated together for testing

import requests

from datetime import datetime

from math import radians, sin, cos, sqrt, atan2

Constants (replace these with actual API details)

SHABODI_API_BASE_URL = "https://api.shabodi.com/v1"

API_KEY = "your_api_key_here"

AUTHORIZED_ZONES = {

"Zone_A": {"latitude": 40.712776, "longitude": -74.005974, "radius": 50, "required_level":

5},

"Zone_B": {"latitude": 34.052235, "longitude": -118.243683, "radius": 50,

"required_level": 7},

}

def get_user_location(user_id):

url = f"{SHABODI_API_BASE_URL}/getLocation"

headers = {"Authorization": f"Bearer {API_KEY}"}

params = {"userId": user_id}

response = requests.get(url, headers=headers, params=params)

if response.status_code == 200:

return response.json() # Assumes response contains latitude and longitude

else:

print(f"Error: {response.status_code}")

return None

def has_access(authority_level, zone_info):

return authority_level >= zone_info["required_level"]

def calculate_distance(lat1, lon1, lat2, lon2):

Haversine formula to calculate the distance between two points on Earth

R = 6371.0 # Earth radius in km

dlat = radians(lat2 - lat1)

dlon = radians(lon2 - lon1)

a = sin(dlat / 2)**2 + cos(radians(lat1)) * cos(radians(lat2)) * sin(dlon / 2)**2

c = 2 * atan2(sqrt(a), sqrt(1 - a))

distance = R * c * 1000 # Convert to meters

return distance

def is_in_zone(user_location, zone_info):

lat, lon = user_location["latitude"], user_location["longitude"]

distance = calculate_distance(lat, lon, zone_info["latitude"], zone_info["longitude"])

return distance <= zone_info["radius"]

def notify_superior(user_id, status):

url = f"{SHABODI_API_BASE_URL}/notify"

headers = {"Authorization": f"Bearer {API_KEY}"}

data = {

"userId": user_id,

"status": status,

"timestamp": datetime.now().isoformat()

}

response = requests.post(url, headers=headers, json=data)

if response.status_code == 200:

print("Superior notified successfully.")

else:

print(f"Notification failed: {response.status_code}")

def restricted_zone_access(user_id, authority_level, zone_name):

user_location = get_user_location(user_id)

if user_location and zone_name in AUTHORIZED_ZONES:

zone_info = AUTHORIZED_ZONES[zone_name]

if has_access(authority_level, zone_info):

if is_in_zone(user_location, zone_info):

print(f"Access granted to {zone_name}.")

notify_superior(user_id, "Access granted and within zone.")

else:

print(f"User is not within the authorized zone for {zone_name}.")

notify_superior(user_id, "Access granted but out of zone.")

else:

print(f"Access denied: insufficient authority level for {zone_name}.")

notify_superior(user_id, "Access restricted due to low authority.")

else:

print("Access denied due to insufficient authority level or invalid zone.")

__

Example usage

user_id = "user_123"

authority_level = 5

restricted_zone_access(user_id, authority_level, "Zone_A")

Critical Components Table

Component Description Purpose Critical
Functionality

Backend API
(Shabodi)

Custom API for
authority validation
and access logging
(as well as location
detection through

network)

Process requests,
validates user
authority, logs
access events

Serves as the main
hub for all system
requests and logic

Database Service -
Firebase Realtime

Cloud database Stores zone
definitions, user
roles, and access

logs

Enables fast
retrieval and

updating of access
records

Access Control Logic Functions for user
validation and zone

checking

Validates user access
based on authority
and zone parameters

Core functionality
for access granting

or restriction

Location Processing Haversine distance
calculation

Calculates the
distance between
user’s location and

zone

Determines if a user
is within the allowed

zone radius

Notification Service -
Firebase Cloud
Messaging

Push notification
API

Sends alerts to
supervisors on

access attempts and
outcomes

Keeps supervisors
informed of access
status in real time

Authentication
Service

OAuth or
JWT-based user
authentication

Verifies user identity
for secure access

Ensures only
authenticated users
interact with the

system

Error Handling and
Logging

Comprehensive
error handling and
logging services

Captures and logs
error, stores activity

history

Aids in debugging
and provides a trail
of access attempts

Mobile/Web
Interface (Optional)

Simple UI for
supervisors to view
access logs and

statuses

Allows for easy
monitoring and

control

User-friendly
interface for

real-time monitoring
of access events

Test Data Table for Combined Code

Purpose: Conduct a comprehensive check of the ZRA system, including authority validation,

location proximity, and supervisor notification. This test verifies that all integrated system

components. This test verifies that all integrated system components work in harmony to

grant or restrict access appropriately.

Test

Case ID

User ID Authorit

y Level

Zone

Name

Expecte

d

Latitude

Expecte

d

Longitu

de

Expecte

d Access

Expecte

d

Notificat

ion

TC-01 user_001 5 Zone_A 40.71277

6

-74.0059

74

Granted “Access

granted

and

within

zone.”

TC-02 user_002 3 Zone_A 40.71277

6

-74.0059

74

Denied “Access

granted

due to

low

authority

”

TC-03 user_003 8 Zone_B 34.05223

5

-118.243

683

Granted “Access

granted

and

within

zone”

TC-04 user_004 7 Zone_B 34.05223 -118.243 Granted “Access

5 683 granted

and

within

zone”

TC-05 user_005 5 Zone_A 34.00000

0

-118.243

683

Denied “Access

restricted

due to

out-of-zo

ne.”

TC-06 user_006 4 Zone_B 34.05223

5

-118.243

683

Denied “Access

restricted

due to

low

authority

”

Testing Overview:

Each component will be tested and evaluated independently, followed by integration testing

to confirm all parts work together seamlessly.

Refined Prototyping Plan with Focused Subtests

This includes detailed subtests for individual components of the system:

Current Focus:

1. Subtest A - Authority Validation

○ Objective: Verify that the system correctly restricts access based on user

authority levels for each zone

○ Test Metric: Authority check should grant or restrict access as specified in

AUTHORIZED_ZONES

○ Pass Criterion: User access matches expected access levels based on

authority

2. Subtest B - Location Proximity Validation

○ Objective: Ensure accurate distance calculation between user and zone centre

using the Haversine formula

○ Test Metric: Calculated distance aligns within a plus/minus 5% margin from

expected

○ Pass Criterion: System consistently verifies user location is within defined

zone radius

Next Focus:

3. Subtest C - Notification Service

○ Objective: Confirm notifications are sent to supervisors with correct status

○ Test Metric: Notification status and message match expected for given

authority and zone proximity

○ Pass Criterion: Notification matches expected message for each user’s access

outcome

4. Subtest D - Integrated Access Check

○ Objective: Test full access validation including authority, location, and

notification

○ Test Metric: Integrated function should output correct access status and

notification message

○ Pass Criterion: Combined test outputs expected result based on authority,

location, and notification tests

Feedback Notes from Potential Users and Others:

- Main control centre everything can be controlled and monitor from vs. cluttered email

alerts

- Preference towards management through telephone, easy and simplistic

- Shabodi Feedback: Functionality over UI

Additional Notes:

● Environmental Factors: All tests should be conducted in a controlled setting with

stable Wi-Fi for accurate location data

● Testing Tools: A location simulation tool will help verify location proximity without

physical movement, ensuring precision

● Revisions: Adjustments to authority or location thresholds will be documented and

incorporated as insights are gathered.

Trello Board:

https://trello.com/invite/b/66e2e5ff3822d226f9561e1a/ATTI53edf476ef9c23a885c5715a307d

0e23A50FC622/gng1103-project-group-10

