Prototype Test Plan

Project Group 10 - November 3, 2024

Objective: Prototype I, establishing foundational functionality for critical subsystems,
including Restricted Zone Access or Zone Restricted Access (ZRA) and Location
Acquisition. Additionally, developing and updating the Bill of Materials (BOM), refine

prototype plan, and initiate testing to validate key performance metrics..

Define Measurements

o API-Table 1
o Zone Restricted Access (ZRA) - Table 2

Table 1: API Defined Measurements

Lines of code 77

Coordinates of user (X,Y) (Dynamic; values vary with user location)

Coordinates of Zone (X,Y) (Dynamic; values depend on designated
zone)

Table 1: ZRA Defined Measurements

Lines of code 26

Authorization value X € R - Specific to access level for each

zone

Bill of Materials

Item Description Quantity Unit Cost ($) | Total Cost Links
(&)
Shabodi’s Access to 1 0 0 Shabodi
APIs Shabodi’s Sandbox
APIs for
location, and
other network
capabilities
Python Open-source 1 0 0 N/A
Development | software for
Environment - | backend
VSCode development
and API
integration
Database Open-source 1 0 0 Understandin
Software - database g your Data
Firebase software Stack
Handbook -
Specifically Gated
Gigaspaces or (gigaspaces.c
MongoDSB om)
Wi-Fi/Bluetoo | Open-source 1 0 0 Scapy -
th Testing tools (scapy) Introduction
Tools for device — Scapy
detection and 2.6.0
network documentatio
control n
scripting
(psutil) Psutil - psutil
- PyPI
Development | Open-source 1 0 0 React
Tools - tools for
Webapp built | developing
with React an optional

user interface

Testing Objectives and Scope

https://go.gigaspaces.com/data-stack-handbook
https://go.gigaspaces.com/data-stack-handbook
https://go.gigaspaces.com/data-stack-handbook
https://go.gigaspaces.com/data-stack-handbook
https://go.gigaspaces.com/data-stack-handbook
https://go.gigaspaces.com/data-stack-handbook
https://go.gigaspaces.com/data-stack-handbook
https://scapy.readthedocs.io/en/latest/introduction.html
https://scapy.readthedocs.io/en/latest/introduction.html
https://scapy.readthedocs.io/en/latest/introduction.html
https://scapy.readthedocs.io/en/latest/introduction.html
https://scapy.readthedocs.io/en/latest/introduction.html
https://pypi.org/project/psutil/
https://pypi.org/project/psutil/
https://react.dev/

Primary Testing Focus: For this prototype, testing will concentrate on two essential

subsystems

1. Restricted Zone Access (ZRA) - Ensuring that only authorized users can enter
designated areas

2. Location Acquisition - Accurately capturing user coordinates for zone validation

By validating these components in isolation, we establish a solid foundation for further

development and integration in future prototypes.

API Analysis:

e Zone-Specific Requirements: AUTHORIZED ZONES is a dictionary where each

zone has a location, radius, and required authority level.

o Authority Level Check: In restricted zone access, the has access function compares
the user's authority level with the zone’s requirement before proceeding with location

validation.

e Access Denial for Low Authority: If the authority level is too low, access is denied,

and the superior is not notified.

Zone Restricted Access: Analysis

e Authorization Check: has access verifies if the user’s authority level meets or
exceeds the required level for the specified zone.
o Access Message: Based on the result, restricted zone access outputs either "Access

Granted" or "Access Restricted."

Testing Procedure

Running the ZRA Code

The ZRA functionality can be tested by inputting a user’s authority level and the zone name.
If the entered level satisfies the zone’s requirement, “Access Granted” is displayed.

Otherwise, it will return “Access Restricted.”

Running the API Code
The API’s code currently serves as a template, pending access to Shabodi’s proprietary API.

When access is granted, API fields will be populated for full testing capability,

Prototype 1 - Couldn’t access API, but functional in current state as it pulls necessary data

and completes analysis to determine location

Design Reason Describe Level of Kind of Metrics Test Analysis Results Interpreta Notes
Concept for the Prototype Prototype Descriptio Method tion
Prototype Concept n
to be
Prototype
d and
Tested
Prototype 1 - Device Demonstra | Focus Analytical Device Scan for Monitor At least Pass if Testing
Proof of Detection te basic detection devices device 80% device conducted using
Concept and device accuracy: within a presence detection detection controlled
Logging detection 80% or specified within the accuracy is accurate | Wi-Fi network
and ability higher Wi-Fi zone and in device 80% of the | setup to ensure
to log over a range log data in logging time or signal
devices 30-minute the higher consistency
within interval database; over a
specified verify 30-minute
zones accuracy testing
using by interval
addresses comparing
manuel
logs with
system
logs

Prototype 2 - Access Verify Focus Analytical | Response Set up Measure Restriction | Pass if the Testing
Critical Restriction | access time for restricted response applied system conducted in
Subsystem and restriction access zones and time by within 2 limits different zones
Testing Bandwidth | and restriction: | apply timing seconds of | access to verify
Control bandwidth 2 seconds bandwidth | delay device within 2 response
control or less limits between detection seconds stability across
capabilitie when a device out of zone | and varied network
s using device detection maintains conditions
Shabodi’s moves out out of restriction
APIL of bounds bounds consistentl
and y
restriction
activation
Prototype 3 - Data Test Focus Analytical Database Test Query the Database Pass if Testing includes
Database and Manageme | storage retrieval storing database retrieval in | retrieval adding multiple
Zone nt for and time <1 device and <1 second time is devices and
Management Zones and retrieval of second; data measure and correct | under 1 zones to
Devices device accurate (MAC retrieval zone second, stimulate actual
dataina zone Address times; updates and zone usage
database, creation zones) and validate manageme
as well as and updating zone nt
setting up, updates zone accuracy functions
updating, settings in by (add,
and database, checking update,
removing ensuring stored vs. delete)
zones. data is displayed work as
quickly data expected
accessible
and
up-to-date
Prototype 4 - User Test full HiFi Physical System Test Interact System Pass if Testing include
Full System Interaction | system Comprehe and operates complete with the stable and system various device
Integration and integration | nsive analytical without system system Ul updates | operates as | entries/exits and
System , including crashes; with all through within 2 intended user actions via
Functional backend, Ul integrated the UI (if seconds with no the UI
ity API, Displays component | implement crashes, functionality
database, data within | s, allowing | ed)and and all and stability
and 2 seconds device validate component
optional manageme | end-to-end s work in
user nt via functionali sync
interface optional ty for
functionali UI and different
ty for ensuring user
monitoring real-time scenarios

updates

Code/Prototype:

ZRA: A sample of the Zone Restricted Access code for initial testing is provided below

Define zones with required authority levels for access
AUTHORIZED ZONES = {
"Zone A": {"required level": 5},

"Zone B": {"required level": 7},

Function to check if user meets the authority requirement for the zone
def has access(authority level, zone name):
zone info = AUTHORIZED ZONES.get(zone name)
if zone info is None:
print("Zone not found.")
return False

return authority level >= zone info["required level"]

Main function to check access for a specific zone
def restricted zone access(authority level, zone name):
if has_access(authority level, zone name):
print("Access Granted.")
else:

print("Access Restricted.")

Example usage

authority level = int(input("Enter user authority level: ")) # User's authority level

zone name = input("Enter zone name (e.g., Zone A): ") # Name of the zone

restricted zone access(authority level, zone name)

API: Sample of the API code for initial testing is provided below:

\import requests

from datetime import datetime

Constants (fill in according to Shabodi's API details)
SHABODI API BASE URL = "https://api.shabodi.com/v1" # Example base URL
API KEY ="your api key here" # Replace with your actual API key

Define zones and required authority levels
AUTHORIZED ZONES = {
"Zone A": {"latitude": 40.712776, "longitude": -74.005974, "radius": 50, "required level":
5,
"Zone B": {"latitude": 34.052235, "longitude": -118.243683, "radius": 50,
"required level": 7},

}

Function to get user's location
def get user location(user_id):

url = " {SHABODI API BASE URL}/getLocation"

headers = {"Authorization": f"Bearer {API KEY}"}

params = {"userld": user id}

response = requests.get(url, headers=headers, params=params)

if response.status_code == 200:

return response.json() # Assuming response has latitude and longitude
else:

print(f"Error: {response.status code}")

return None

Function to check if user meets the authority requirement for the zone
def has access(authority level, zone info):

return authority level >= zone_info["required level"]

Function to check if user is within authorized zone
def'is_in_zone(user location, zone info):
Here, use the Haversine formula or geolocation library to check distance

lat, lon = user location["latitude"], user location["longitude"]

distance = calculate distance(lat, lon, zone info["latitude"], zone info["longitude"])

return distance <= zone_info["radius"]

Function to notify superior
def notify superior(user _id, status):
url = " {SHABODI API BASE URL }/notify"
headers = {"Authorization": {"Bearer {API KEY}"}
data = {
"userld": user _id,
"status": status,
"timestamp": datetime.now().isoformat()

}

response = requests.post(url, headers=headers, json=data)

if response.status_code == 200:
print("Superior notified successfully.")
else:

print(f"Notification failed: {response.status code}")

Main function to check access for each authorized zone
def restricted zone access(user id, authority level, zone name):

user_location = get user location(user_id)

if user location and zone name in AUTHORIZED ZONES:
zone info = AUTHORIZED ZONES[zone name]

Check if the user has the required authority level
if has_access(authority level, zone info):

Check if user is within the zone

if is_in_zone(user location, zone info):
print(f"Access granted to {zone name}.")
notify_superior(user _id, "Arrived on time")
else:
print(f'User is not within the authorized zone for {zone name}.")
else:
print(f"Access denied: insufficient authority level for {zone name}.")
else:

print("Access denied due to insufficient authority level or invalid zone.")

Example usage
ser_id = "user123" # Replace with actual user ID

authority level =5 # Example authority level

restricted zone access(user id, authority level, "Zone A")

Combined Code: Sample of the code integrated together for testing

import requests
from datetime import datetime

from math import radians, sin, cos, sqrt, atan2

Constants (replace these with actual API details)
SHABODI API BASE URL = "https://api.shabodi.com/v1"
API KEY ="your api key here"

AUTHORIZED ZONES = {

"Zone A": {"latitude": 40.712776, "longitude": -74.005974, "radius": 50, "required level":
5},

"Zone B": {"latitude": 34.052235, "longitude": -118.243683, "radius": 50,
"required level": 7},

}

def get user location(user id):

url = f"{SHABODI API BASE URL}/getLocation"
headers = {"Authorization": f"Bearer {API KEY}"}
params = {"userld": user_id}

response = requests.get(url, headers=headers, params=params)

if response.status_code == 200:

return response.json() # Assumes response contains latitude and longitude
else:

print(f"Error: {response.status code}")

return None

def has access(authority level, zone info):

return authority level >= zone info["required level"]

def calculate distance(latl, lonl, lat2, lon2):
Haversine formula to calculate the distance between two points on Earth
R =6371.0 # Earth radius in km
dlat = radians(lat2 - latl)
dlon = radians(lon2 - lon1)
a =sin(dlat / 2)**2 + cos(radians(latl)) * cos(radians(lat2)) * sin(dlon / 2)**2
c =2 * atan2(sqrt(a), sqrt(1 - a))
distance =R * ¢ * 1000 # Convert to meters

return distance

def'is_in_zone(user location, zone info):

lat, lon = user location["latitude"], user location["longitude"]
distance = calculate distance(lat, lon, zone info["latitude"], zone info["longitude"])

return distance <= zone_info["radius"]

def notify superior(user id, status):
url = f"{SHABODI API BASE URL}/notify"
headers = {"Authorization": {"Bearer {API KEY}"}
data = {

"userld": user id,

"status": status,
"timestamp": datetime.now().isoformat()

}

response = requests.post(url, headers=headers, json=data)

if response.status_code == 200:
print(" Superior notified successfully.")
else:

print(f'"'Notification failed: {response.status code}")

def restricted zone access(user _id, authority level, zone name):
user location = get user location(user_id)
if user location and zone name in AUTHORIZED ZONES:
zone info = AUTHORIZED ZONES[zone name]

if has_access(authority level, zone info):
ifis_in_zone(user location, zone info):
print(f"Access granted to {zone name}.")
notify superior(user id, "Access granted and within zone.")
else:
print(f"User is not within the authorized zone for {zone name}.")
notify superior(user_id, "Access granted but out of zone.")
else:
print(f"Access denied: insufficient authority level for {zone name}.")
notify superior(user_id, "Access restricted due to low authority.")

else:

print("Access denied due to insufficient authority level or invalid zone.")

Example usage
user id = "user 123"
authority level =5

restricted zone access(user_id, authority level, "Zone A")

Critical Components Table

and access logging
(as well as location
detection through
network)

authority, logs
access events

Component Description Purpose Critical
Functionality
Backend API Custom API for Process requests, Serves as the main
(Shabodi) authority validation validates user hub for all system

requests and logic

Database Service -
Firebase Realtime

Cloud database

Stores zone
definitions, user
roles, and access

logs

Enables fast
retrieval and
updating of access
records

Access Control Logic

Functions for user
validation and zone
checking

Validates user access
based on authority
and zone parameters

Core functionality
for access granting
or restriction

Location Processing

Haversine distance
calculation

Calculates the
distance between
user’s location and
zone

Determines if a user
is within the allowed
zone radius

Notification Service -

Push notification

Sends alerts to

Keeps supervisors

Interface (Optional)

supervisors to view
access logs and
statuses

monitoring and
control

Firebase Cloud API supervisors on informed of access
Messaging access attempts and status in real time
outcomes

Authentication OAuth or Verifies user identity Ensures only

Service JWT-based user for secure access authenticated users
authentication interact with the
system
Error Handling and Comprehensive Captures and logs Aids in debugging
Logging error handling and | error, stores activity | and provides a trail
logging services history of access attempts
Mobile/Web Simple Ul for Allows for easy

User-friendly
interface for
real-time monitoring
of access events

Test Data Table for Combined Code

Purpose: Conduct a comprehensive check of the ZRA system, including authority validation,

location proximity, and supervisor notification. This test verifies that all integrated system

components. This test verifies that all integrated system components work in harmony to

grant or restrict access appropriately.

Test User ID | Authorit | Zone Expecte | Expecte | Expecte | Expecte
Case ID y Level Name d d d Access d
Latitude | Longitu Notificat
de ion
TC-01 user 001 |5 Zone A |40.71277 | -74.0059 | Granted | “Access
6 74 granted
and
within
zone.”
TC-02 user 002 | 3 Zone A |[40.71277 | -74.0059 | Denied “Access
6 74 granted
due to
low
authority
TC-03 user 003 | 8 Zone B [34.05223 [-118.243 | Granted [“Access
5 683 granted
and
within
zone”
TC-04 user 004 | 7 Zone B [34.05223 [-118.243 | Granted [“Access

683

granted
and
within

zone”

TC-05

user 005

Zone A

34.00000
0

-118.243
683

Denied

“Access
restricted
due to
out-of-zo

2

ne.

TC-06

user 006

Zone B

34.05223
5

-118.243
683

Denied

“Access
restricted
due to
low

authority

2

Testing Overview:

Each component will be tested and evaluated independently, followed by integration testing

to confirm all parts work together seamlessly.

Refined Prototyping Plan with Focused Subtests

This includes detailed subtests for individual components of the system:

Current Focus:

1. Subtest A - Authority Validation

o

Objective: Verify that the system correctly restricts access based on user

authority levels for each zone

Test Metric: Authority check should grant or restrict access as specified in

AUTHORIZED ZONES

o

Pass Criterion: User access matches expected access levels based on

authority

2. Subtest B - Location Proximity Validation

o

Next Focus:

Objective: Ensure accurate distance calculation between user and zone centre
using the Haversine formula

Test Metric: Calculated distance aligns within a plus/minus 5% margin from
expected

Pass Criterion: System consistently verifies user location is within defined

zone radius

3. Subtest C - Notification Service

o

o

Objective: Confirm notifications are sent to supervisors with correct status
Test Metric: Notification status and message match expected for given
authority and zone proximity

Pass Criterion: Notification matches expected message for each user’s access

outcome

4. Subtest D - Integrated Access Check

o

Objective: Test full access validation including authority, location, and
notification

Test Metric: Integrated function should output correct access status and
notification message

Pass Criterion: Combined test outputs expected result based on authority,

location, and notification tests

Feedback Notes from Potential Users and Others:

- Main control centre everything can be controlled and monitor from vs. cluttered email

alerts

- Preference towards management through telephone, easy and simplistic

- Shabodi Feedback: Functionality over Ul

Additional Notes:
e Environmental Factors: All tests should be conducted in a controlled setting with
stable Wi-Fi for accurate location data
o Testing Tools: A location simulation tool will help verify location proximity without
physical movement, ensuring precision
e Revisions: Adjustments to authority or location thresholds will be documented and

incorporated as insights are gathered.

Trello Board:
https://trello.com/invite/b/66e2e53822d2269561ela/ATTI53edf476ef9c23a885¢5715a307d
0e23A50FC622/gng1103-project-group-10

4 = Filters M% CEs CGEa N ers +3 cen

+ Add another list

0 Board VvV 7

GNG1103 ProjectGroup 10 w &

Doing

Develop Prototype used to achieve
team objectives

< 2 FOMO] =
CG LF MK MG

Analytical, numerical, or experimental
model

¥l © O
CG LF MG MK

+ Add a card

Gather Feedback / ideas from
potential clients

m ® ® Oct27- =

CG LF MK MG

L]
Document prototyping test plan

® o = (<}

Update target specifications,
detailed design and BOM if needed

+ Add a card

Create a clear and detailled drawing
of the chosen concept

= MK

Develop Prototype
°

Oct 27 - Nov 2

CG LF MK

Prepare Slides for client meeting 2

LF

Choose best global concept
[_ [=

+ Add a card

