GNG5140

Inclusive Bike – Revised Prototype Analysis and Test Results

Submitted by

[INCLUSIVE BIKE TEAM] [JONATHAN HORTON, 7710257] [SACHIN KASBEKAR, 300341464] [GAURANG LELE, 300384544] [KRISTINA PRASAD, 300398734]

[RAGHAV KAUSHIK VAGATA UMESH, 300382565]

21st of March 2024

University of Ottawa

Abstract

This document outlines our first attempt at prototyping and testing our final product. The prototypes in this document are a combination of simulated and concrete products. The global solution that we have come up with is described in detail using a block diagram. Moreover, the various prototypes are outlined in detail. Each subsystem's prototype will be documented in detail using sketches, diagrams, and pictures. When testing is possible, the tests completed for these systems are described and the results of these tests are provided. Moreover, a bill of materials outlining the costs of components that will be purchased is provided.

Table of Contents

Abstract	i
Table of Cor	ntents ii
List of Figur	esiv
List of Table	esvi
List of Acro	nyms vii
1 Introdu	ction
2 Global	Solution9
3 Prototy	pe, Test, and Bill of Materials10
3.1 The	e Display, Brake Lights, and Blinkers11
3.1.1	Documentation of Brake Lights and Blinkers11
3.1.2	Testing of the LCD display, Brake Lights, and Blinkers12
3.1.3	Electrical System- Future work before final prototype14
3.2 The	e Floor and Ramp16
3.2.1	Documentation of Floor and Ramp16
3.2.2	Testing the Floor and the Ramp
3.3 Mo	unt24
3.3.1	Documentation of Mount Design
3.3.2	Prototype Testing
3.4 Stra	aps
3.4.1	Documentation of Strapping System
3.4.2	Prototype Analysis
3.5 Bill	l of Materials

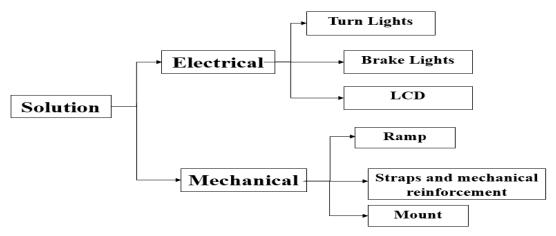
Hus	sky 1-inch x 12 ft. Ratchet Tie-Down (4-Pack) [Straps]	.33
4	Updating the Prototype Test Plan	.35
5	Conclusions and Recommendations for Future Work	.36

List of Figures

Figure 1 – Inclusive Bike Flowchart	9
Figure 2 – Visualization of the final product. Electronics are not depicted	0
Figure 3 – Electronics of the display 12	2
Figure 4 – Initial Circuit Prototype of the Electronic System for the Bike 12	2
Figure 5 – Wiring of the GPS module (left) and the Bluetooth module (right) 14	4
Figure 6 Connection to Arduino for GPS Module (Left) and Bluetooth Module (Right) 14	4
Figure 7 – The Bluetooth Module and GPS Module Connected 1:	5
Figure 8 – Isometric View of Hinge 10	б
Figure 9 – Top and side view of Hinge 10	б
Figure 10 –Isometric View of Ramp 17	7
Figure 11 – Top and side view of Ramp 1'	7
Figure 12 – Isometric View of Floor	8
Figure 13 – Top and side view of Floor 18	8
Figure 14 – Total Deformation 19	9
Figure 15 – Equivalent Stress	0
Figure 16 – Factor of Safety 20	0
Figure 17 – Total Deformation of Ramp 2	1
Figure 18 – Equivalent Stress of Ramp 2	1
Figure 19 – Factor of Safety of Ramp 22	2
Figure 20 - Total Deformation	3
Figure 21 – Equivalent Stress	3
Figure 22 – Factor of Safety	4

Figure 23 – Welded Component Isometric View	25
Figure 24 – Welded Component of Mounting Top View and Mounting Side View	26
Figure 25 – Welded Mounting Isometric	26
Figure 26 – Welded Mounting Top (left) and side (right)	27
Figure 27 – Total Deformation	27
Figure 28 – Equivalent Stress	28
Figure 29 – Factor of Safety	28
Figure 30 – Total Deformation	29
Figure 31 – Equivalent Stress	29
Figure 32 – Factor of Safety	30
Figure 33 – Rear Strapping	31
Figure 34 – Front Strapping	31

List of Tables


Table 1 – Tests Results for LCD, Break Lights, and Blinkers	13
Table 2 – Tests completed on GPS and Bluetooth Modules	. 15
Table 3 – Dimensions of Components	. 18

List of Acronyms

Acronym	Definition
BOM	Bill of Materials
GPS	Global Positioning System
FOS	Factor of Safety

Introduction

This document outlines the initial prototyping of the final product. It serves as a record of why decisions were made early in the design process and outlines the design in its early stages. It exists so that future engineers working on the project may understand why one decision was made over another, and what issues became apparent in the early stages of designing the project. The main purpose of this project is to create an inclusive bike that is significantly cheaper than current existing solutions, while also being easy to use and about as durable as competing products. Note that subsystems are often discussed and tested as separate entities in this deliverable; in a future deliverable the system will be shown as a whole.

2 Global Solution

Figure 1 – Inclusive Bike chart

As shown in Figure 1, there are two main subsystems in our solution: the electrical system and the mechanical system. The mechanical features include a system to hold the wheelchair securely to the floor and a ramp designed to hold the weight of the user without bending too much (up to 150kg). This ramp is designed to allow the user to get on and off the trailer hassle-free. Additionally, a mounting system is included to link the trailer and the bike. From the electrical perspective, the design includes a brake light that illuminates when the driver activates the bike's braking mechanism. Blinking signal lights are also incorporated for when the driver intends to turn. Moreover, an LCD display allows the rider to communicate with the driver of the bike. The rider may do so by using the 4 buttons present with the rider.

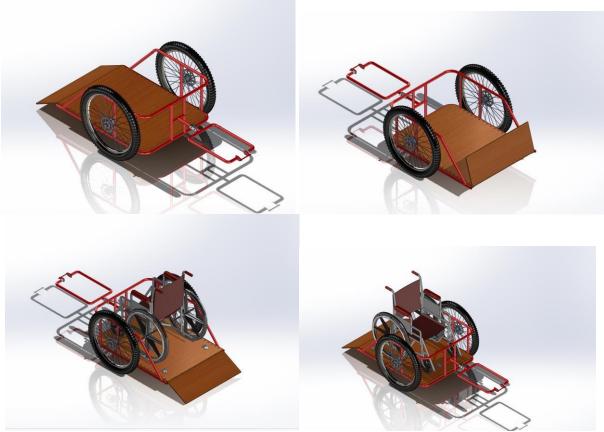
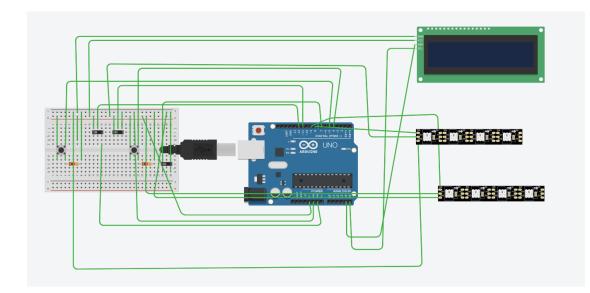


Figure 2 – Visualization of the final product. Electronics are not depicted.

Shown in the figure above is a visualization of the final product. Note that the straps and electronics are not depicted; the combination of each subsystem into a usable product will be shown in a future deliverable and is not the subject of this deliverable.

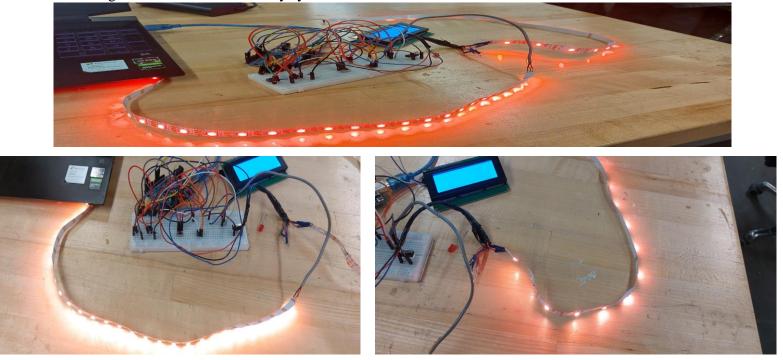
3 Prototype, Test, and Bill of Materials

This section documents the initial prototype for subsystem of the protype. The prototyping is broken down into 5 sections: (1) the brake lights and blinkers, (2) the mount system, (3) the floor and ramp, and (4) the straps. Lastly the bill of materials for all components is provided.


3.1 The Display, Brake Lights, and Blinkers

3.1.1 Documentation of Brake Lights and Blinkers

Listed below are the purposes of each component tested in this section.


- In regards to the previous prototype where we demonstrated blinkers using just a single led strip, a lot of new changes have been introduced in the current prototype.
- For instanc two LED strips (WS2812B) for the blinkers which is controlled using two slider switches instead of a single button used earlier that functions as per the final requirements.
- Finaly assembly of LCD on breadboard for communication with the driver using push buttons meeting the communication requirements.
- Integration of the two LED strips which function as both blinkers and brake lights and LCD (communication) and carried out successful testing on breadboard.
- In the previous prototypes for basic testing we had used individual LED strip and LED for the blinkers, and brake lights.

The diagram of these components is shown in the figure below.

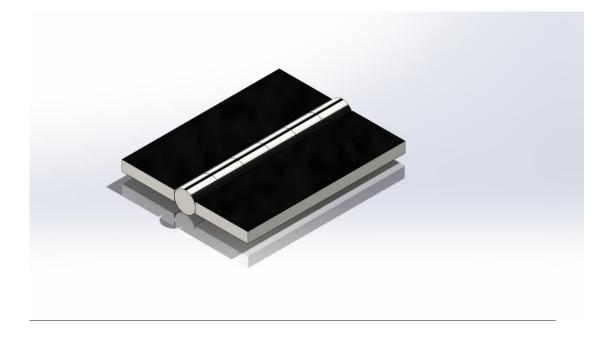
3.1.2 Testing of the Safety system- Blinkers aka brakelights

The figure below shows the safety system

3.1.3 Testing of the Safety system- Blinkers aka brakelights

Table 1 – Tests Results for LCD, Break Lights, and Blinkers

Components-Category(Purpose)	Expected	Actual results
Blinkers (LEDs)- Safety	Blink when turning with high brightness so that it is visible to others	Matches the expectations 100%.
Slider switches(control)-Safety	When pressed turn on blinkers while taking turns and turn off when not needed.	Meeting the mentioned expectations
Red LED(Brake light)- Safety	When brakes are pressed backligh should glow	Both the blinker LED strips function as brake lights as well on breadboard when the brake switch is pressed
LCD- Communication	Show basic messages which the rider wants to convey to the driver and clear messages when the control is changed.	Tested out for all the message signals by pressing the control buttons under all conditions on the breadboard.


3.1.3 Electrical System- Future work before final prototype-

- Design of Protoboard circuit and soldering of all the components on individual PCBs.
- 2. Initial testing of all the components and systems soldered on the PCBs to ensure there is no change in the previously recorded test results.
- Design and manufacturing of the casings for the safety and communication systems.
- 4. Assembly of the different complete boards on the bike and run the wiring between the various PCBs and systems.

3.2 The Floor and Ramp

3.2.1 Documentation of Floor and Ramp

We have outsourced the materials required for the components and subsystems asssembly in our inclusive bike. The components are hinge, ramp, base and a mount for connecting the bike with the carriage. These components are shown in the figures below.

Figure 8 – Isometric View of Hinge

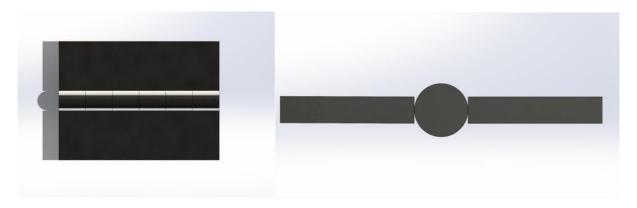


Figure 9 – Top and side view of Hinge

Figure 10 –Isometric View of Ramp

Figure 11 – Top and side view of Ramp

Figure 12 – Isometric View of Floor

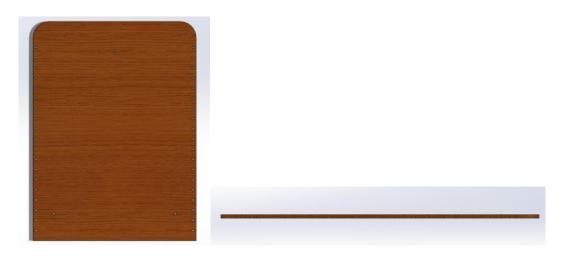
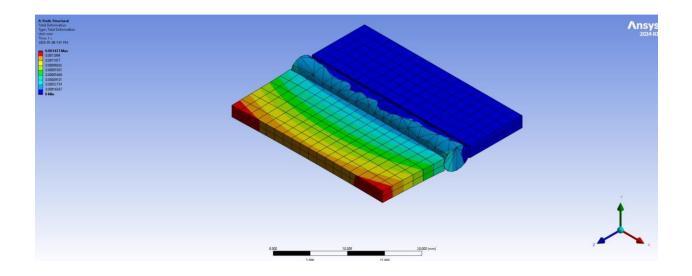


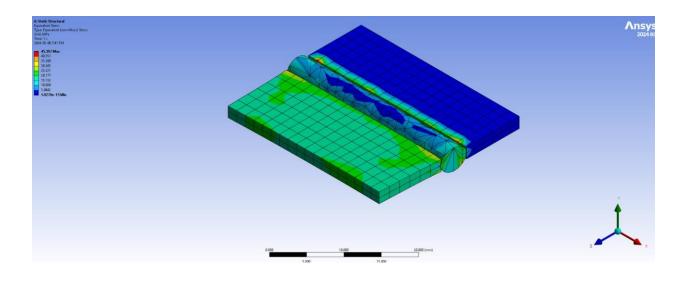
Figure 13 – Top and side view of Floor

The dimensions of the components shown above are given in the table below.

Table 3 – Dimensions of Components				
Hinge	LxBxH: 30x24x2 mm			
8*				
Ramp	LxBxH: 805.5x300x10 mm			
Tump				
Floor	LxBxH: 1077.7x805.52x15 mm			
11001				


3.2.1 Testing the Floor and the Ramp

In this section the deformation, equivalent stress, and factor of safety are simulated and the results are shown. The results were used to determine the exact size, shape and dimensions of the components. First, the hinge was tested. Static Structural Testing was conducted on the hinge with a maximum load of 1200 N at the point of connection between the base and ramp. The total $\frac{17}{17}$


deformation, equivalent stress and FOS have been pictured below. The load was spread over a 10s time.

The results of the completed tests are shown below.

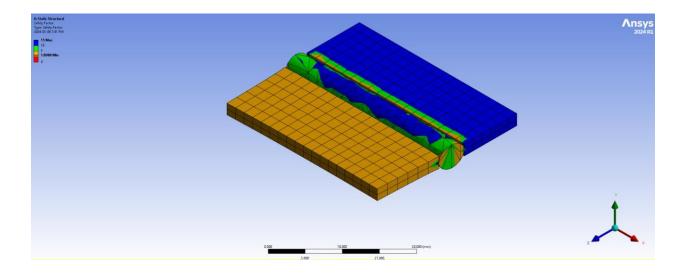

- 3.2.1.1 Maximum Deformation: 0.0014mm
- 3.2.1.2 Maximum Equivalent Stress: 45.39MPa
- 3.2.1.3 Minimum FOS: 1.9

Figure 14 – Total Deformation

Figure 15 – Equivalent Stress

Figure 16 – Factor of Safety

Static Structural Testing was conducted on the ramp with a maximum load of 1200 N on the face of the ramp . The total deformation, equivalent stress and FOS have been pictured below. The load was spread over a 10s time.

The following are the results of the tests in the figures below:

3.2.1.4 Maximum Deformation: 0.44mm

3.2.1.5 Maximum Equivalent Stress: 60.57MPa

3.2.1.6 Minimum FOS: 1.42

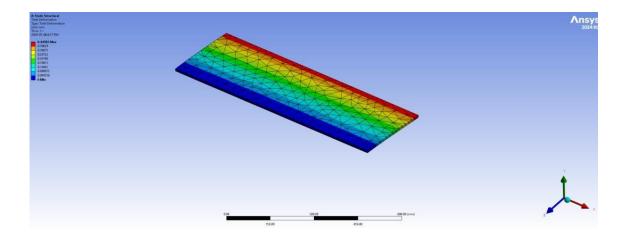


Figure 17 – Total Deformation of Ramp

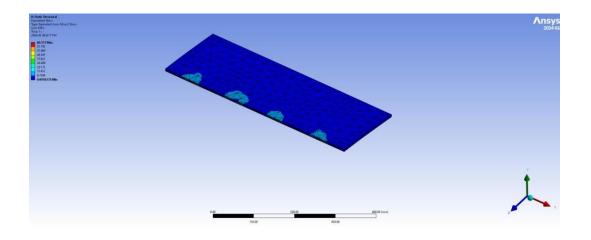


Figure 18 – Equivalent Stress of Ramp

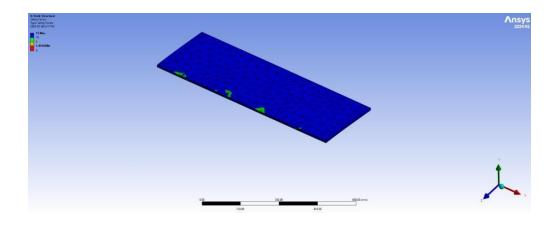


Figure 19 – Factor of Safety of Ramp

Static Structural Testing was conducted on the floor with a maximum load of 2205 N on the face of the floor. The total deformation, equivalent stress and FOS have been pictured below. The load was spread over a 10s time.

The results from the images shown below are as follows.

- 3.2.1.7 Maximum Deformation: 0.09mm
- 3.2.1.8 Maximum Equivalent Stress: 24.21MPa
- 3.2.1.9 Minimum FOS: 3.5

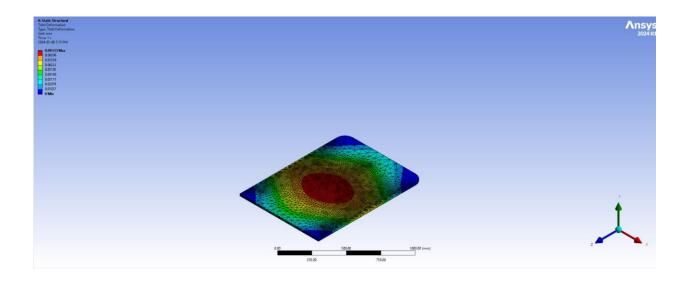


Figure 20 - Total Deformation

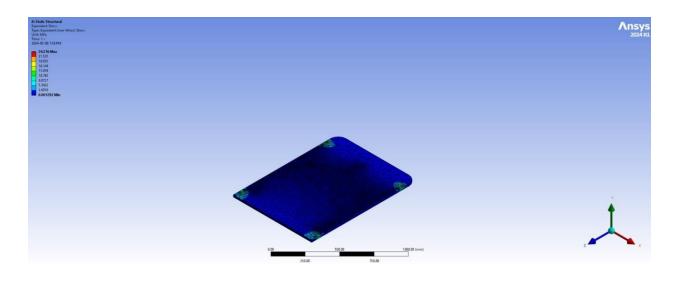


Figure 21 – Equivalent Stress

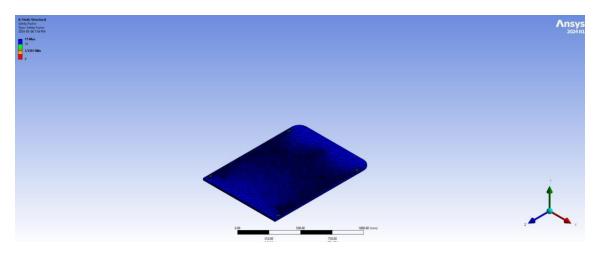


Figure 22 – Factor of Safety

3.3 Mount

The rear mount subsystem consists of 2 flanges which will be installed onto the rear axle of the bike. The flanges have a hole in them through which the rear axle will be passed. These flanges are then welded to pipes which wrap around the rear wheel of the bike. Another pipe is welded perpendicular to the wrap around pipe with holes made for bolts to be inserted through.

The maximum deformation is under limits at 0.227mm. The Maximum Equivalent Stress and the Factor of Safety (FOS) figures are dangerously close to failure and hence will be reviewed in the future. The end pipe where the force has been tested on will be covered by a square steel element protruding from the carriage. Two bolts of 12mm will be inserted into the holes to secure the linkage. Hence, the safety concerns are lowered when considering the above use case.

3.3.1 Documentation of Mount Design

The dimensions of the prototype are as follows:

3.3.1.1 Rear Axle: Dia. 9mm

- 3.3.1.2 Flange: Hole Dia. 9mm, Length: 75mm, Height: 40mm, Thickness: 3mm
- 3.3.1.3 Secondary Flange: Hole Dia. 9mm, Length: 3in, Height: 1in, Thickness 3mm
- 3.3.1.4 Square Pipes: 1in x 0.065in thickness
- 3.3.1.5 End Flange: 3in x 1.5in x 3mm
- 3.3.1.6 Total length of all pipes: 851mm

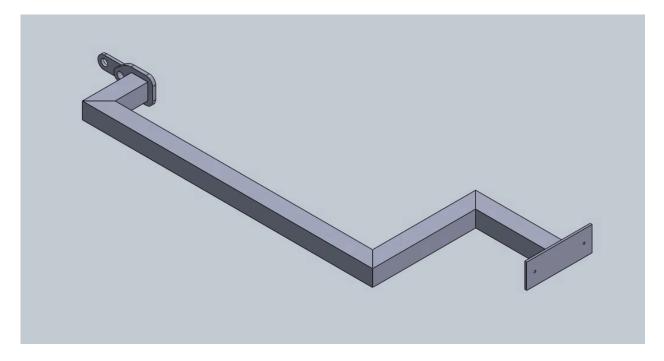
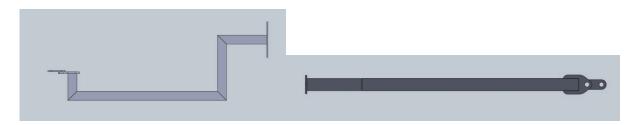
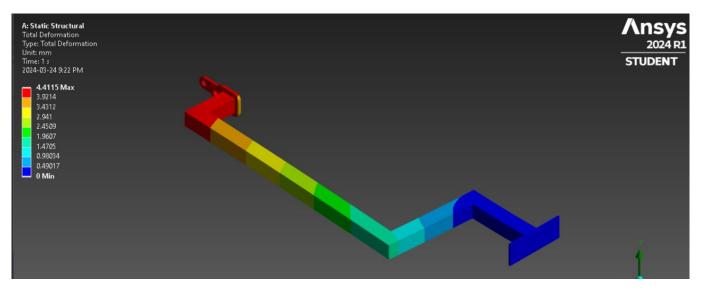
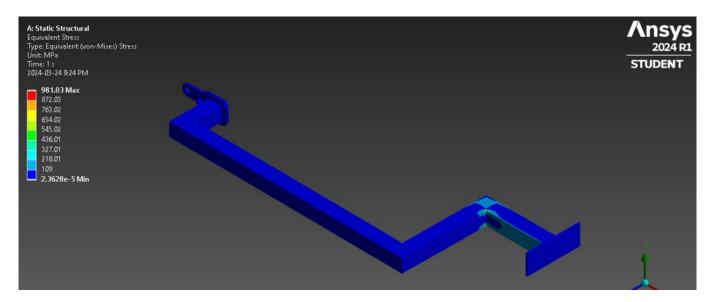


Figure 23 – Welded Component Isometric View


Figure 24 – Welded Component of Mounting Top View and Mounting Side View

3.3.2 Prototype Testing

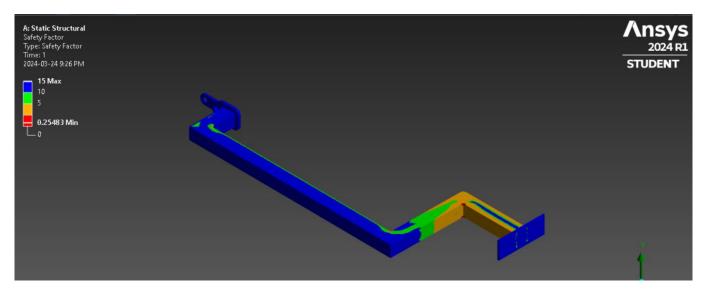
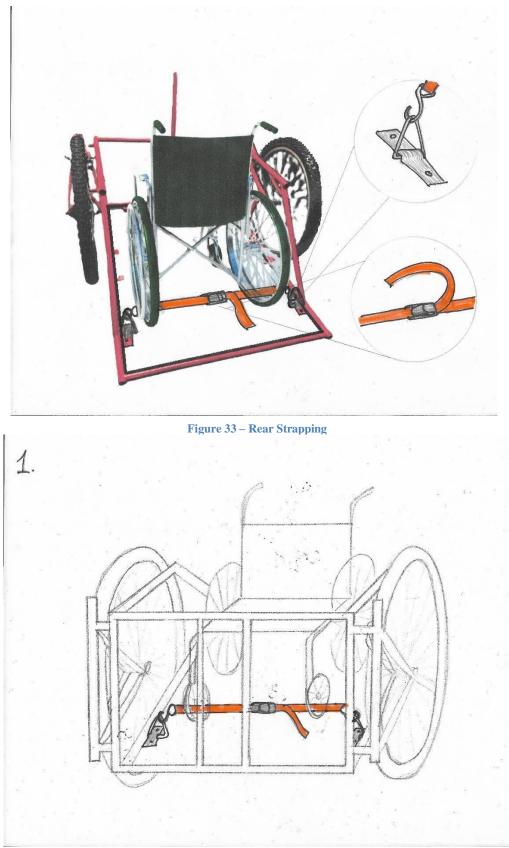

Static Structural Testing was conducted on the Mount with a maximum load of 1000 N at the point of connection with the rest of the carriage. The total deformation, equivalent stress and factor of safety have been pictured below.

Figure 27 – Total Deformation

Figure 29 – Factor of Safety


The results are of the tests shown above are as follows:

- **1.** Maximum Deformation: 4.415mm
- 2. Maximum Equivalent Stress: 981.03 MPa
- **3.** Minimum FOS: 0.25

3.4Straps

3.4.1 Documentation of Strapping System

The strapping system is supposed to improve the safety of a trailer user by securing the wheelchair to the floor of the attachment.

Figure 34 – Front Strapping

3.4.2 Prototype Analysis

Out of three ways of the strapping suggested earlier, we came to a conclusion that the first way would be the best for securing the wheelchair in a stable position as well as the most comfortable for the user. This is because other techniques did not provide leg space for the user, and the given strapping system should anchor the wheelchair at 4 different points when tensioned, which should minimize jostle. Completing the testing of this system is virtually impossible until we complete a concrete prototype.

3.5 Bill of Materials

The bill of materials is	s shown in the table below.
--------------------------	-----------------------------

Item	Quantit	Need	Cost	Link
	У			
5mm thick steel plate [For	2	To attach the pipes to the rear	2 x 20 = 40\$*	https://a.co/d/8FDWnrg
Mount[2 x 400 mm	axle. To attach the rear axle to the carriage.	45\$*	https://www.amazon.ca/OD-Brushed-Stainless- Tubing-Custom/dp/B07KRMZPB1?th=1
1 inch OD steel pipe [For Mount]	260mm	To join the two parallel pipes behind the rear wheel.	13\$*	https://www.amazon.ca/OD-Brushed-Stainless- Tubing-Custom/dp/B07KRMZPB1?th=1
	125 mm	To create a connection between the mount and the carriage.	7\$*	https://www.amazon.ca/OD-Brushed-Stainless- Tubing-Custom/dp/B07KRBWZC4?th=1

Husky 1- inch x 12 ft. Ratchet Tie-Down (4-Pack) [Straps]	1 pack	Straps are required to secure wheelchair on the trailer	\$19.9 8 / each	https://www.homedepot.ca/product/husky-1-inch- x-12-ft-ratchet-tie-down-4-pack-/1001031415
Husky Light- Duty Black Anchor Points (4- Pack) [Straps]	1 pack	Anchors are required to attach the straps to the platform of the trailer	\$9.44 / each	https://www.homedepot.ca/product/husky-light- duty-black-anchor-points-4-pack-/1001580425
Hinge	6	To attach the ramp with the floor	6 x 5 = 30\$	https://www.homedepot.ca/en/home/categories/buil ding-materials/hardware/door-hardware/door- hinges.html
Ramp	1	To easily put the wheelchair on the carriage	1 x 50= 50\$	https://www.homedepot.ca/en/home/categories/buil ding-materials/lumber-and- composites/plywood/mdf.html
Floor	1	The floor of the Carriage	Same as above	https://www.homedepot.ca/en/home/categories/buil ding-materials/lumber-and- composites/plywood/mdf.html
Rod	1	The rod of the Carriage	1 x 20= 20\$*	
Aluminiu m mount	1	The mount the bicycle with carriage	1x30 =30\$	
TOTAL	N/A	N/A	139.4 2	N/A
TOTAL (with tax)			157.5 4	

* It may be possible to obtain this item for free through the University's Bike COOP or Brunsfield

Center or some other source.

Listed in the following table are the electronics. Note that prices are omitted for this project because the electronics were obtained from uOttawa's Makerspace for free.

Component	Quantity
Arduino UNO	1
M2M jumpers	20-30
M2F jumpers	10
RED LED	1
LED STRIP	2
Slider Switches	2
Contact Switch	1
LCD	1
Voltage Source	5 V
PCBs	3-4
Speaker	1
Resistors	10k ohm(5-6)
Long single-strand wires	10-30
RGB LED strip	1
Buttons	5-10
Bluetooth Module (ZS-040)	1
GPS Module (Beitian BN-880)	1

4 Updating the Prototype Test Plan

Due to licensing problems with Wrike, the Gantt chart and the general planning for last week was omitted. As such, this week, the document contains a plan for both of the weeks' work. The new project management software being used for the remainder of the semester is Asana, which has all the functionalities required for this class, including task assignment, start and end dates for tasks, and a Gantt chart view.

4.1 Initial Prototype Analysis and Test Results

In the two figures shown below, there is a table listing out every task and a Gantt diagram. The table demonstrates (1) tasks to be done, (2) the person assigned with the responsibility to ensure that a particular task is completed, (3) the importance of the task, and (4) its status.

✓ Initial Prototype				
▼ 🥥 Design of Floor in CAD 2 🛤	S Sachin Kasbe		High	Done
O Do analysis for wood and metal floors	Sachin Kasbe		Medium	Done
Add support beams to reduce flexion	S Sachin Kasbe		High	Done
▼ 🥥 Design of Ramp in CAD 🔋 🛤	Sachin Kasbe		High	Done
Do analysis for wood and metal	Sachin Kasbe		Medium	Done
Do stress analysis on hinges	Sachin Kasbe		High	Done
Add ramp lock	Sachin Kasbe		Medium	Done
▼ 🥝 Attachment Design in CAD 🛛 4日	gl glele049@uo		High	Done
📀 Complete initial design	g] glele049@uo	Mar 1 – 4	Low	Done
Complete CAD model	g] glele049@uo	Mar 5 – 7	Medium	Done
Complete stress analysis on attachment	g] glele049@uo		Medium	Done
Redesign attachment to one side	g] glele049@uo		High	Done
▼ 🥹 Breadboad Prototype for Electronics 5日	RU Raghav Kaus		Medium	Done
🧭 Redo design with switches	RU Raghav Kaus		Low	Done
Combine electronic systems	RU Raghav Kaus		Medium	Done
Reprogram to run electronics together	RU Raghav Kaus		High	Done
🤣 Test system integrated together)ihort062@u		Medium	Done
Test GPS module and Bluetooth Module	p) ihort062@u	Mar 1 – 5	Low	Done
▼ 🥝 Final Strap Possibilities 3日	😥 Kristina P		High	Done
Check different strapping positions	😥 Kristina P		Medium	Done
Oetermine based on drawings best mounting system	😢 Kristina P		Medium	Done
Finalize purchasing decision	😢 Kristina P		Medium	Done
▼ 🥑 Purchasing Straps, Floor, Ramp, and Attachment 4 \lor \downarrow \downarrow \downarrow \downarrow	🍺 jhort062@u		High	Done
🤣 Purchase Floor)ihort062@u		Medium	Done
🤣 Purchase Ramp)ihort062@u		Medium	Done
🤣 Purchase Attachment	g] glele049@uo		High	Done
🤣 Purchase Straps	Kristina P		Medium	Done
Ø Deliverable D	🍺 jhort062@u		High	Done

▼ KP ✓ Final Strap Possibilities 3 😂	
KP < Check different strapping positions	p - Finalize pur
▼ ਗ਼ ✓ Attachment Design in CAD 4 😂	
	edesign at- chment to
▼ RU ✓ Breadboad Prototype for Electronics 5 😂	
	est system tegrated t _n .
SK - Design of Floor in CAD 2 😂	
SK - Do analysis for wood and SK - Add support beams to reduce flexion	
	Delivera D
SK - Design of Ramp in CAD 3 😂	
SK - Do analysis for wood SK - Do stress analysis on SK - Add ramp	p lock
	jh ~ }

4.2 Revised Prototype Analysis and Test Results

In the two figures shown below, there is a table listing out every task and a Gantt diagram. The table demonstrates (1) tasks to be done, (2) the person assigned with the responsibility to ensure that a particular task is completed, (3) the importance of the task, and (4) its status. A plan for the upcoming week is also demonstrated.

Task name Prototype and Test	Assignee	Due date	Priority	Task Progress
🔻 🥥 Prototype Floor 🛛 4 🖽	Sechin Kasb		Medium	Done
Acquire bolts, nuts, drill	Sachin Kasb		Medium	Done
Mark flange holes with markers	Sachin Kasb		Medium	Done
Drill holes in floor for bolts	Sachin Kasb		Medium	Dore
Mount support Beam	Sachin Kasb		Medium	Done
🔻 🥥 Prototype Ramp 🛛 4 😂	Sachin Kasb		Medium	Done
Acquire bolts and nuts (8 - one for each flange) - M6	SK Sachin Kasb		High	Done
Drill holes in board	Sachin Kasb		High	Done
Pass nuts through board, support beam, and flange.	Sachin Kasb		High	Done
Test stability of mount, check flexion of floor with wheelchair.	SK Sachin Kasb		High	Done
▼ 🤣 Attachment 4 😂	glele049@u		High	Core
Acquire metal parts for attachment	glele049@u		Medium	Done
Print out design to follow during welding	glele049@u		Medium	Dore
Weld components together	(hort062@uo		High	Done
Test system by mounting it to wheel of bike	(hort062@uo		High	Done
▼ 🥥 Mount Straps and Anchors 2日	🐵 Kristina P		Medium	Done
Drill holes to mount straps	🐵 Kristina P		Medium	Done
Pass bolts through floor with	🐵 Kristina P		Medium	Done
▼ ② Electronic PCB 3 tt	Ru) Raghav Kaus		High	In Progress
Create Diagram for PCB Design	📵 Raghav Kaus		High	Done
Solder components	🔊 Raghav Kaus	Today - Mar 25	Medium	In Progress
Test soldered system	🔊 Raghav Kaus	Today - Mar 26	Medium	Not Start
▼ ⊘ Electronic Housing 3 tt	🐵 Kristina P		Medium	Not Start
O Design Housing	🐵 Kristina P		Medium	Not Start
Lasar Print/Construct housing	🐵 Kristina P	Mar 27 – 28	High	Not Start
Mount Housing to bike (probably zip ties but maybe bolt/nuts)	🤓 Kristina P	Riday	Medium	Not Start
▼ ⊘ Paint 2≒	(hort062@uo	. Mar 25 – 29	Low	Not Start
Acquire Black Paint	(hort062@uo		Medium	Not Start
Use University paint room to apply it to mount system	(hort062@uo		Medium	Not Start
▼ ⊘ Mount Electronics 3 は	(hort062@uo		Medium	In Progress
Measure out wire length	(hort062@uo		Medium	Not Start
Solder wires to the PCB and Connectors	(hort062@uo		Medium	Not Start
Mount and attach system to the bike and trailer	(hort062@uo		Medium	Not Start
Reworking the Attachment	glele049@u		Low	Walding
🕗 Deliverable E	SK) Sadhin Kasb	Mar 21 – Today	High	In Progress

Figure 3 - Gantt Diagram for Revised Prototype

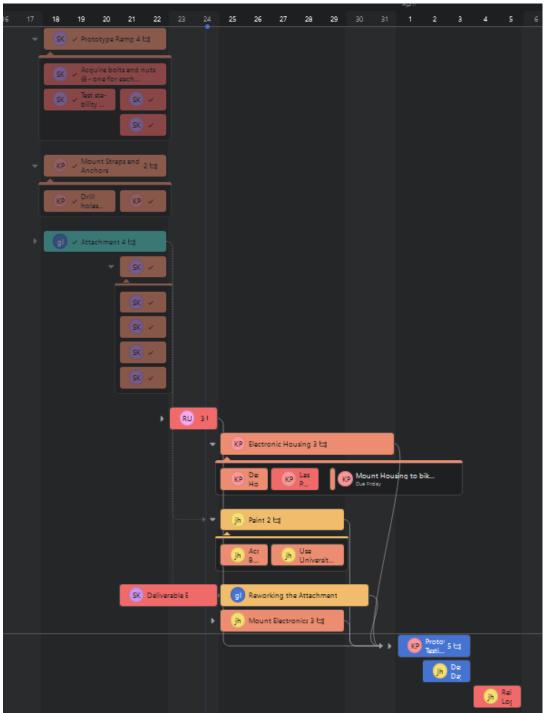


Figure 4 – Gantt Diagram for Revised Prototype Analysis and Test Results

5 Conclusions and Recommendations for Future Work

In conclusion, most of the electrical and mechanical features of the inclusive bike have been prototyped, and test results have been promising. On the mechanical side of things, the manufacturing process the manufacturing process has started and the physical prototype completion is in progress. On the electrical side, the Components are being soldered onto the PCBs for the finall assembly. The electrical system needs to be mounted and wired onto the physical prototype. A box for housing the electronics needs to be created.