Objectives:
Devise a test plan and develop your second prototype. Get customer feedback

on your prototype
Instructions:

Teams will outline a prototyping test plan based on the template provided
in “Lecture 11 — Prototyping Test Plan” and develop a prototype which will be
used to achieve the objectives your team has set out in this plan (i.e. you need to
answer the “why”, “what” and “when” of prototyping). Typical objectives include
communicating and getting feedback for ideas, verifying feasibility, analysing
critical subsystems or system integration or reducing risk and uncertainty. You
must also define a stopping criteria which will allow you to end the test once you
are satisfied that you have achieved your testing objectives. Be very clear about
what you are trying to measure and define an acceptable fidelity based on the
objectives of your prototype. Since this will be your team’s second prototype,
your justifications and reasoning for this prototype should include a short
explanation of your results from your previous prototype and how this second
prototype continues the development of your solution. This second prototype
should be of a critical (or the most critical) subsystem, in order to ensure that
your design will work (keeping in mind the total course budget of $100). Get
creative in order to improve your results. An analytical, numerical or experimental
model should also be included. Finally, you must gather feedback and comments
on your ideas and prototype from potential clients/users that you have sought out
and identified on your own. Carefully document your prototyping test plan,
modeling techniques and results (including detailed images of your prototype), as
well as the feedback and comments you have gathered. Again, it is strongly
recommended that you start early, as prototyping takes a significant amount of
time. You only have one week to complete this prototype, but keep in mind that
this prototype can integrate into a more comprehensive prototype later.

Lighting:

In our first prototype, we designed diagrams of how the lighting system was to be
automated. For the second prototype, we bought some of our materials and put
our diagrams to the test. We began by constructing the circuit for the indoor
lighting, which would be powered directly by a 120V power supply, controlled by
a simple 2-way light switch. Figure 1 shows the circuit with the switch off, while
figure 2 shows the light on while the switch is on, meaning the circuit was
successfully implemented. Figure 3 demonstrates the circuit with more details, to
show exactly how it was wired.

Figure 1 Figure 2

Since we are still waiting on the relay to implement the outdoor lighting circuit
demonstrated in the diagram in the first prototype, we were unable to make the
circuit. However, we have constructed the code that will be programmed into the
arduino to power the automatic outdoor lighting. It can be found in the picture
below.

int relay_outside = §;
int relay_inside = 9;

volatile byte relay_outsideState = LOW;
volatile byte relay_insideState = LOW;

int sensor_outside = 2
int sensor_inside = 3;

long lastDebounceTimel = @;
long debounceDelayl = 10600,
long lastDebounceTimeZ = @;
long debounceDelay? = 10800,

void setup() {
pinMode(relay_outside, OUTPUT);
digitalWrite(relay_outside, HIGH);
pinMode(relay_inside, OUTPUT);
digitalWrite(relay_inside, HIGH);
attachInterrupt{digitalPinToInterrupt(sensor_outside), detectMotionl, RISING);
attachInterrupt{digitalPinToInterrupt(sensor_inside), detectMotionZ, RISING);
Serial.begin(96d);

S
vold loop() {

if{{millis{) - lastDebounceTimel) > debounceDelayl && relay_outsideState == HIGH)

{
digitalWrite{relay_outside, HIGH);
relay_outsideState = LOW;
Serial.printlnC"0FF Outsideywn");

¥

if{{millis{) - lastDebounceTime2) > debounceDelay? && relay_insideState = HIGH)

{
digitalWrite{relay_inside, HIGH);

1f((millis() - lastDebounceTimel) > debounceDelayl &% relay_outsideState = HIGH)

digitalWrite(relay_outside, HIGH);
relay_outsideState = LOW;
Serial.println("0FF Outside\n");

1

if({millis{) - lastDebounceTimeZ) > debounceDelayZ && relay_insideState == HIGH)

digitalWrite(relay_inside, HIGH);
relay_insideState = LOW;
Serial.println("0OFF Inside\n");
!
delay(5@);
}

vold detectMotionl() {

Serial.println("Motion Outside\n"?};
if(relay_outsideState = LOW)
{

digitalWrite(relay_outside, LOW);
}
relay_outsideState = HIGH;
Serial.println{"ON Outside\n™);
lastDebounceTimel = millis();

}

void detectMotionz() {]

Serial.println("Motion Inside\n");
if(relay_insideState == LOW)
{

digitalWrite(relay_inside, LOW);
}
relay_insideState = HIGH;
Serial.println("ON Inside:n");
lastDebounceTimeZ = millis();

i
|

The customers feedback when presenting all of the progress we made to
the client was positive. The client was impressed that everything was done on
schedule and that the prototype was looking good. However there were concerns
that the client expressed during the meeting. One concern the client had was
how the light bulbs were going to get the electricity to run from the battery. We
already have done all the research necessary before the meeting in order to be
well informed about this topic which in result provided us with an answer for the
client right away. The answer is that the Solar team is providing standards outlets
throughout the house which is too run on 120 Volts of alternating current. This is
helpful for our scenario because a battery outputs direct current which light bulbs
can use; however they will not run as efficiently as they can. Instead we are

planning on running our electricity to the converter that the solar team is
providing so that the light bulbs will run on alternating current which is much
more efficient. Alternating current is more efficient because the light bulbs are not
constantly on the entire time, they are oscillating from turning off and on at a very
high frequency so that the human eye cannot detect that the light is being turned
off and on repeatedly. Therefore, this will further provide more efficiency and
battery saving to the house which is a very important priority. In conclusion, the
client was impressed with the progress that was made over this time period and
was relieved when we answered all of her concerns and questions.

Heathing:

The heating system is comprised of four critical subsystems.The first is the
temperature monitor, the second is the Icd, the third is the potentiometer, and the
fourth is the relay. In this prototype three of the four subsystems have been
integrated. The first system integrated is the temperature sensor. The
temperature sensor has three pins, the first is voltage, the second is output, and
the third is ground. In order to get a proper reading out of the sensor it is
important to have a dedicated ground for it. Once the wiring is setup you next
need to convert the 10-bit analog output into celsius. Once this was finished the
sensor was properly outputting the rooms temperature into the serial monitor.

The second system is the LCD. The lcd being used for the project will be
using the IC2 standard. The IC2 standard works well for what we need as it only
needs two analog ports from the arduino. Integrating this component was fairly
simple as there are only two wires that needed to be attached to the arduino and
then two more connected to power and ground. Once the code was complete,
we tested the Icd by printing the current temperature to it (as seen in figure 2).
The third system is the potentiometer. To fully integrate the potentiometer into
the system there are three parts that will need to be completed. The first part is to
attaching it to the arduino, second is to relate the output of the component to the
desired room temperature, and third will be to print the desired room temperature
onto the LCD.

In terms of customer feedback, the main concern that was brought up was
about the output of the LCD screen that was talked about during the last
prototype. In particular, the client focused on the casing surrounding the screen,
and the possibilities for having alternate ways to notify the user about the
temperature.

Concerning the former, the client was fairly pleased with the design of the
casing (as seen in figure 1), and stated that the only thing to watch out for was
the size in order to make sure it is not too large. When discussing the alternatives
to notify the user, the client brought up the idea of how an LED could be attached
to the system, and could light up if the temperature being read was appropriate
or not. After talking about it with the client however, it was to be settled on that
instead of an LED, the backlight of the LCD screen would turn on/off instead,
notifying the user about the general condition of the temperature from a distance
away.

Figure 1 - thermostat casing Figure 2 - current circuit

Heating Arduino code

#include<Wire.h>

#include<LiquidCrystal_I2C.h>

LiquidCrystal_I2C lcd(0x27, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE);

void setup() {
Icd.begin(16,2);
Icd.backlight();
Serial.begin(9600);

}

void loop() {
heatingloop();

}
void heatingloop()}
int sensorVal = analogRead(A0);
int dialval = analogRead(A3);
float temperature = calcTemp(sensorVal); //Translates the data from temperature sensor into celsius
int dtemp = settemp(dialval); //translates the potentiometer output to desired temperature
heater(temperature,dtemp); //turns on heater if required
IcdHeat(temperature,dtemp); // prints the the temperature on the Icd
}
float calcTemp(int sensorVal) {
float voltage = ((sensorVal/1024.0)*5.0);
float temperature = (voltage-0.5)*100;
return temperature;

}

void IcdHeat(float temperature,int dtemp) {
Icd.setCursor(0,0);
Icd.print(temperature);
Icd.print(char(223));
Icd.print("C Actual");
Icd.setCursor(0,1);
Icd.print(dtemp);
Icd.print(char(223));
Icd.print("C want");

}

float settemp(float dialval){
float dtemp = (dialval/40.0);
return dtemp;

}

void heater(int temp,int dtemp){
int relay1;
if (dtemp > temp){

relay1 = 1;
}
else{
relay1 = 0;

}

}

Water:

int solenoidPin = 4; // this is the output pin on the arduino we are using
int ultraPin = 10; // input for ultrasonic

void setup() {
// put your setup code here, to run once:
pinMode (solenoidPin, OUTPUT) ; //Sets the solenoidPin as an output

pinMode (ultraPin, INPUT); //Sets the ultraPin as the input

void loop() {
// put your main cocde here, to run repeatedly:
if digitalRead(ultraPin, HIGH) {
digitalWrite (solenoidPin, HIGH); //switch solenoid ON
}
else{
digitalWrite (solencidPin, LOW); //switch solencid OFF

}

For the second prototype for water, the main difference from the first prototype
was the fact that we actually implemented a code to allow the user to turn the solenoid
on and off. Actual construction of the sink has not begun due to the fact that we just
ordered our materials. In the following 2 weeks we will have a test prototype and a final
product for water ready to be used for design day.

Regarding the client, there was not much to show her just yet but she was
pleased with our overall layout/ idea for how the water will be supplied. We will be
emailing the client pictures of our first design of the sink on Wednesday, before moving
onto the final stage of the project.

